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A coupled-mode model is presented for wave–current–seabed interaction, with
application to the problem of wave scattering by ambient shearing currents in
variable bathymetry regions. We consider obliquely incident waves on a horizontally
non-homogeneous current in a variable-depth strip, which is characterized by straight
and parallel bottom contours. The flow associated with the current is assumed to be
directed along the bottom contours and it is considered to be steady and known. In
a finite subregion containing the bottom irregularity, we assume that the horizontal
current profile is general and smoothly varying. Outside this region, the current is
assumed to be uniform (or zero). Based on a variational principle, in conjunction
with a rapidly convergent local-mode series expansion of the wave pressure field in
the finite subregion containing the current variation and the bottom irregularity, a
new coupled-mode system of equations is obtained, governing the scattering of waves
in the presence of variable bathymetry and longshore shearing currents. By keeping
only the propagating mode in the local-mode series, a new one-equation model is
derived, having the property to reduce to the modified mild-slope equation when the
current is zero, and to the enhanced mild-shear equation when the bottom is flat. An
important aspect of the present model is that it can be further elaborated to treat
shearing currents with general, depth-dependent vertical structure, and to include the
effects of weak nonlinearity.

1. Introduction
Except of depth variations, the presence of currents significantly influences the

propagation of waves in the nearshore and coastal environment. Detailed knowledge
of the wave characteristics in the presence of ambient currents and bottom variations is
important for various applications, as, for example, in coastal and harbour engineering
problems, in the study of oil slick dispersion and pollutant transport in nearshore
and coastal waters, as well as for sediment transport and coastal erosion studies.
Extensive reviews on the subject of wave–current interaction in the sea and in the
nearshore region have been presented by Peregrine (1976), Jonsson (1990) and Thomas
& Klopman (1997). Non-homogeneous shearing currents, following or opposing
wavetrains, produce significant changes in the wave characteristics, especially in the
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region where there is a rapid change of current strength. Thus, large-amplitude waves
may appear as a result of interaction of obliquely propagating waves with adverse
currents (see, e.g. Mei 1983; Jonsson 1990, § 1B). Wave amplification could be further
enhanced by inshore effects due to sloping seabeds, and has sometimes been reported
to be connected with the appearance of ‘giant waves’ in coastal waters (see, e.g.
Dysthe 2000; Faulkner 2000).

Wave–current interaction models over slowly varying bottom topography have been
developed and studied by various authors. Under the assumption of irrotational wave
motion, Kirby (1984) derived a phase-resolving one-equation model, generalizing the
mild-slope equation (Berkhoff 1972) in regions with slowly varying depth and ambient
currents (see also Liu 1990). The latter model in its elliptic time-harmonic form has
been exploited, in conjunction with numerical (finite-element, finite difference etc.)
solvers, to numerous wave–current–seabed interaction applications (see, e.g. Chen,
Panchang & Demirbilek 2005 and references therein).

On the other hand, if the wave flow is assumed to be weakly rotational, as happens
to be the case when waves are scattered by shearing currents characterized by stronger
horizontal gradients, McKee (1987) derived another one-equation model, called the
mild-shear equation. However, the validity of the mild-shear equation is based on the
assumption of slow current and depth variations compared to the typical wavelength.
In the case of a flat bottom, the mild-shear model has been further enhanced by McKee
(1996) by including an extra term and obtaining the so-called enhanced mild-shear
equation. The latter model is applicable to cases where the shearing current is varying
on the scale of the wavelength. In McKee (1987, 1996) the current is considered
to be flowing along one horizontal direction while the bottom topography varies in
the other horizontal direction. Thus, the mild-shear model is more appropriate for
problems of wave scattering by slowly varying depth and longshore-type ambient
shearing currents.

In both the above approaches (mild-slope model, mild-shear model) the effects of
evanescent modes, describing higher-order localized effects due to bottom and current
variations, have been ignored. Apart from the above models based on the irrotational
and weakly rotational assumption concerning the wave motion, another class of
wave–current–seabed interaction models have been developed, applicable to cases
where the lateral length scale on which the medium (bottom topography and current)
is changing is much smaller than the typical wavelength. In this case, the problem has
been modelled by means of step discontinuities and vertical vortex sheets, separating
subregions of essentially potential flow, in conjunction with appropriate matching
conditions ensuring continuity of pressure and normal flow following the vortex
sheet(s). In this context, generalizing the work by Evans (1975) for the transmission
of deep-water waves across a vortex sheet, Smith (1983, 1987) presented models
treating the problem of waves crossing uniform current jets in constant finite depth
and crossing a step with horizontal shear, respectively. Also, Kirby, Dalrymple &
Seo (1987) studied the propagation of obliquely incident waves over a trench with
uniform current flowing along it. In the latter models, complete representations of
the wave potentials in the various subregions have been used, containing both the
propagating and the evanescent modes, which are necessary in order to satisfy the
matching/boundary conditions at the vertical interfaces (vortex sheets and depth
discontinuities). Finally, the approach by Smith (1987) and Kirby et al. (1987) has
been further exploited by McKee (2003) to study scattering of waves by shearing
currents of general horizontal structure in water of constant depth. In the latter work,
the current is modelled by a series of vertical vortex sheets separating subregions
of constant current velocity, and the solution is again obtained by using complete
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Figure 1. Geometrical configuration and basic notation.

representations of the wave potential in each subregion and matching conditions
at the vertical interfaces. Also, in McKee (2003) systematic comparisons have been
presented between the predictions by the mild-shear equation(s) and the piecewise
constant current velocity approximation, which is considered as more exact, showing
that the accuracy of the enhanced mild-shear equation is generally better than the
original mild-shear equation. Furthermore, it is shown in the same work that in cases
of waves interacting with strong adverse shearing currents, as well as in cases where
the current variation length is much smaller than the wavelength, the accuracy of the
simplified mild-shear models is lost.

In the present work, a continuous coupled-mode model is developed for the
scattering of water waves by horizontally shearing currents in variable bathymetry
regions, without any asymptotic assumption or restriction concerning the smallness
of the bottom and current variation lengths with respect to the local wavelength. We
consider obliquely incident harmonic waves on a horizontally non-homogeneous
current in a variable-depth strip, characterized by straight and parallel bottom
contours (figure 1). For simplicity, the flow associated with the current is assumed to
be parallel to the bottom contours and it is considered to be uniform in depth and
known. In a finite subregion containing the bottom irregularity, the horizontal current
profile is general and smoothly varying. Outside this region, the current is assumed
to be uniform (or zero). Under the smallness assumption concerning the steepness of
the waves, the problem is governed by the linearized Euler equations, the free-surface
and the bottom no-entrance boundary conditions, as described in § 2.

The present coupled-mode system of equations on the horizontal plane is obtained
by an appropriate variational principle, described in § 3, in conjunction with a rapidly
convergent local-mode series expansion of the wave pressure field in the finite
subregion containing the current variation and the bottom irregularity, discussed
in § 4. The local-mode series contains, apart from the propagating and evanescent
modes, an additional term, called the sloping-bottom mode, first introduced by
Athanassoulis & Belibassakis (1999) for the propagation of water waves in variable
bathymetry regions. The sloping-bottom mode enables the consistent satisfaction of
the Neumann boundary condition on the non-horizontal parts of the bottom, and
substantially accelerates the rate of convergence of the local-mode series. Thus, for
all practical applications, a small number of modes (of the order of 4–5, including
the propagating mode, the sloping-bottom mode and the first few evanescent modes)
is found to be enough for an accurate numerical solution. Moreover, by keeping
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only the propagating mode in the local-mode series, a new one-equation model has
been derived and discussed in § 4.2, called the mild-slope and shear equation. This new
model approximately describes the combined scattering effects due to shearing current
and bottom irregularities, and consistently generalizes both the modified mild-slope
equation (Massel 1993; Chamberlain & Porter 1995) and the enhanced mild-shear
equation (McKee 1996), having the property to reduce exactly to the former when
the current is zero and to the latter when the bottom is flat.

Numerical results are presented in § 5.1 for the scattering of waves by jet-like
shearing currents in constant depth, including comparisons with the multidomain
approximation method (McKee 2003), and the simplified mild-shear model(s) (McKee
1987, 1996). It is shown that the present coupled-mode model with a small number of
modes provides results fully compatible with the exact multidomain approximation
method. Furthermore, with the aid of systematic comparisons in cases of smooth but
steep shoals, in § 5.2, we present and discuss the effects of transitional-type following
and opposing currents on the hydrodynamic characteristics of the wave–current
system. As another example, we examine in § 5.3 the case of a waves scattered by
sinusoidal current in constant depth, and show that there are cases where strong
enhancement of the wave amplitude could be obtained within downwave-directed
current jets. This is in agreement with previous observations which suggested that
wind-wave amplitudes might be enhanced within the downwind-directed current
maxima associated with alternating ‘wind streaks’ or ‘Langmuir circulation’ (Smith
1983, 2001), leading to preferential breaking of waves along such current jets. Finally,
in § 5.4, we investigate the influence of longshore-type currents over sinusoidal
bottom topography on the Bragg scattering of obliquely incident water waves and
discuss their effects on the shifting of the first-order resonant frequencies and the
enhancement/reduction of reflection.

2. Differential formulation of the problem
The present work is based on the following differential equation on the wave

pressure p, which models the combined effects of steady shearing current and variable
bathymetry on small-amplitude waves (Mei 1983, chap. 3.6),

∂2p

∂xi∂xi

+
∂2p

∂z2
= −2ρ

(
∂ui

∂xj

∂Uj

∂xi

+
∂w

∂z

∂W

∂z

)
, (2.1)

where (u1, u2, w) denotes the wave flow and (U1, U2, W ) the steady current, (x1, x2) =
(x, y) are the horizontal coordinates and z is the vertical coordinate (positive upwards),
and ρ is the (constant) density. Equation (2.1) has been obtained from the continuity
equation and the Euler equations, after appropriate linearization. Furthermore, the
wave pressure should satisfy the linearized free-surface boundary condition,

(
∂

∂t
+ Uj

∂

∂xj

)2

p + 2W

(
∂p

∂t
+ Uj

∂P

∂xj

)
− g

∂H

∂xj

∂p

∂xj

+ g
∂p

∂z
= 0 on z = H, (2.2)

where P and H denote the pressure and the free-surface elevation associated with
the (underlying) steady current flow and g is the acceleration due to gravity, as well
as the kinematic boundary condition

∂η

∂t
+ Ui

∂η

∂xi

+ ui

∂H

∂xi

− w − η
∂W

∂z
= 0 on z = H, (2.3)
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where η detotes the free-surface elevation associated with the wave flow. Also, the
wave pressure p must satisfy the bottom boundary condition, which reads

∂p

∂z
+

∂h

∂xj

∂p

∂xj

= 0 on z = −h. (2.4)

In the present work, we consider a simplified model problem corresponding to
obliquely incident harmonic waves on a horizontally non-homogeneous current in a
variable-depth strip, characterized by straight and parallel bottom contours (figure 1).
The liquid is assumed to be homogeneous, and the flow associated with the current
is parallel to the bottom contours and it is considered to be steady and known.
More specifically, the bottom surface exhibits an arbitrary one-dimensional variation
in a subdomain of finite length (i.e. the bathymetry is characterized by straight and
parallel bottom contours) lying between two regions of constant but possibly different
depth, h = h1(region of incidence) and h = h3 (region of transmission). The function
h(x) represents the local depth, measured from the mean water level. It is considered
to be a smooth function, such that h(x) = h(a) = h1 for x � a, and h(x) = h(b) = h3

for x � b. The vertical strip D is decomposed into three subdomains D(i), i = 1, 2, 3,

where D(1) and D(3) are half-strips, corresponding to x < a and x > b, respectively,
and D(2) is the variable bathymetry subdomain lying between D(1) and D(3). The same
decomposition is also applied to the free-surface and the bottom boundaries.

We consider the scattering problem of obliquely incident plane waves, under the
combined effects of variable bathymetry and the horizontally non-homogeneous shear
current, U1 =W = 0, U2 =U (x), existing only in x > a (figure 1). The steady current
set-down is assumed to be negligible (H =0), and thus, also P = 0. The current
velocity is described by the differentiable function U (x), which can be general in the
intermediate region, a � x � b, as, for example, a monotonic one or a periodic one
with characteristic length L. Outside this region, the current is assumed to be uniform
(or simply zero),

U (x) = U1 = 0, x � a, U (x) = U3, x � b. (2.5)

Restricting ourselves to monochromatic (harmonic) waves of absolute frequency ω,
propagating with direction θ1 with respect to the bottom contours in the region of
incidence, the wave pressure is expressed in the form (Smith 1983, 1987),

p(x, y, z; t) = Re{p(x, z) exp(i(qy − ωt))}, (2.6)

where q is the periodicity constant along the y−direction and i =
√

−1. Under the
previous assumptions, from (2.1), (2.2) and (2.4) we find that the wave flow is governed
by the following equation with respect to the (complex) pressure p(x, z) in D,

∂2p

∂x2
+

∂2p

∂z2
− q2p +

2q

σ

∂U

∂x

∂p

∂x
= 0, (2.7a)

subjected to the boundary conditions

∂p

∂z
−µ(x) p = 0 on z = 0, (2.7b)

∂p

∂z
+

dh

dx

∂p

∂x
= 0 on z = −h(x), (2.7c)

where σ = σ (x) = ω − qU (x) is the local intrinsic frequency and µ = σ 2/g is the
corresponding frequency parameter.
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Following (2.3), the free-surface elevation can be obtained from the solution of the
above problem as follows

η (x, y; t) = Re

{
p (x, z = 0)

ρg
exp (i (qy − ωt))

}
. (2.8)

Other quantities of interest, as, for example, the wave velocities, can be obtained in
terms of p(x, z) and its spatial derivatives from the linearized Euler equations (Mei
1983, equations (6.15) and (6.16)) as follows:

u1 = − i

ρσ

∂p

∂x
, u2 = − iq

ρσ
p − 1

ρσ 2

∂U

∂x

∂p

∂x
, w = − i

ρσ

∂p

∂z
. (2.9)

The problem of water-wave scattering by the shearing current U (x), with the effects
of variable bathymetry, can be formulated as a transmission problem in the bounded
subdomain D(2), with the aid of the following general representations of the pressure
p(x, z) in the semi-infinite strips D(1) and D(3) (Smith 1983, 1987; Kirby et al. 1987):

p(1)(x, z) =
(
A0 exp

(
ik

(1)
0 x

)
+ AR exp

(
−ik(1)

0 x
))

Z
(1)
0 (z)+

∞∑
n=1

C(1)
n Z(1)

n (z) exp
(
k(1)

n (x− a)
)
,

(2.10a)
in D(1), where A0 is the amplitude of the (known) incident wave, and

p(3)(x, z) = AT exp
(
ik(3)

0 x
)
Z

(3)
0 (z) +

∞∑
n=1

C(3)
n Z(3)

n (z) exp
(
k(3)

n (b − x)
)

in D(3). (2.10b)

The above expansions are obtained from the eigensolutions of the modified Helmholtz
equation to which (2.7a) reduces in D(1) and D(3) (since dU/dx = 0 there). The terms
(A0 exp(ik(1)

0 x) + AR exp(−ik(1)
0 x))Z(1)

0 (z) and AT exp(ik(3)
0 x)Z(3)

0 (z) in the series (2.10)
are the propagating modes, associated with incident wave (which is considered to be
known), the reflected and the transmitted wave, respectively. The remaining terms
(n = 1, 2, . . .) are the evanescent modes. In (2.10), the horizontal wavenumbers k(l)

n ,
l = 1, 3, are defined as follows

k
(l)
0 =

√(
κ

(l)
0

)2 − q2, k(l)
n =

√(
κ

(l)
n

)2
+ q2 (n � 1), (2.11a)

where {iκ (i)
0 , κ (i)

n , n = 1, 2, . . .}, l = 1, 3, are obtained as the roots of the dispersion
relations (formulated at the depths hl, l = 1, 3):

µlhl = −κ (l)hl tan
(
κ (l)hl

)
(l = 1, 3). (2.11b)

In the above equations µl = σ 2
l /g, σl = ω − qUl, l = 1, 3. Also, the functions

{Z(l)
n (z), n = 0, 1, 2, . . .} appearing in (2.10) are given by

Z
(l)
0 (z) =

cosh
(
κ

(l)
0 (z + hl)

)
cosh

(
κ

(l)
0 hl

) , Z(l)
n (z) =

cos
(
κ (l)

n (z + hl)
)

cos
(
κ

(l)
n hl

) (n = 1, 2, . . . , l = 1, 3).

(2.12)

Since the current is assumed to be zero in D(1), the intrinsic and absolute frequencies
are equal there (σ = ω). Thus, the periodicity constant q is obtained from the
wavenumber of the incident wave, as follows

q = κ
(1)
0 sin θ1, (2.13)

where iκ (1)
0 is the unique imaginary-positive root of (2.11b) for l =1. Then, the direction
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of the transmitted wave in D(3) is calculated by

θ3 = sin−1
(
κ

(1)
0 sin θ1

/
κ

(3)
0

)
, (2.14)

where iκ (3)
0 is the unique imaginary-positive root of (2.11b) for l = 3. An important

property of the solution p(x, z) to (2.7) (see also McKee 1987, § 3) is that it satisfies
the conservation of wave action flux through vertical sections in the strip D,

1

σ 2(x)

∫ z=0

z=−h(x)

Im

(
p̄(x, z)

∂p(x, z)

∂x

)
dz = const for all x, (2.15a)

where an overbar denotes the complex conjugate. Application of (2.15a) to the regions
of incidence D(1) and transmission D(3) away from the inhomogeneity (x → ±∞), in
conjunction with representations (2.10) keeping only the corresponding propagating
(n= 0) modes, and using∫ z=0

z=−hl (x)

(
Z

(l)
0 (z)

)2
dz =

1

g

σl

κ
(l)
0

(Cg)l , l = 1, 3,

results in

(|A0|2 − |AR|2) (Cg)1 cos θ1

σ1

= |AT| 2 (Cg)3 cos θ3

σ3

, (2.15b)

where (Cg)l , l = 1, 3, denote the group velocities in D(1) and D(3). Since the terms
(|A0|2 − |AR|2) and |AT|2 are proportional to the wave energy in the regions of
incidence and transmission, respectively, (2.15b) is recognized as the integral form of
wave action conservation law in the present case (Smith 1983, § 3; Mei 1983, equ-
ation (7.14)). Moreover, (2.15b) provides us with an expression connecting the
reflection and transmission coefficients that can be used to check the accuracy of
any numerical solution.

Given the representations (2.10), the problem can be reformulated as a transmission
boundary-value problem for the wave pressure, consisting of (2.7a–c) for p(x, z) in
the bounded subdomain D(2), in conjunction with the matching conditions:

p = p(1),
∂p

∂x
=

∂p(1)

∂x
, x = a, −h1 < z < 0, (2.16a, b)

p = p(3),
∂p

∂x
=

∂p(3)

∂x
, x = b, −h3 < z < 0, (2.16c, d)

on the vertical interfaces ∂D
(12)
I (x = a) and ∂D

(23)
I (x = b) separating the three

subdomains.

3. Variational formulation
The transmission problem admits an equivalent variational formulation, which will

be used in the sequel for the derivation of a new coupled-mode system governing the
scattering of waves by horizontally shearing current in variable bathymetry regions.
Consider the functional:

F
(
p, AR,

{
C(1)

n

}
n∈N

, AT ,
{
C(3)

n

}
n∈N

)
= 1

2

∫
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(
∇

(
p

σ

))2

+

(
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∂2σ −1

∂x2

)(
p

σ

)2

dx dz

− 1
2

∫
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(2)
F

µ

(
p

σ

)2

dS − 1
2

∫
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(2)
Π

(
σ

∂

∂n

(
1

σ

))(
p

σ

)2

dS +
1

σ 2
1

∫
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I

(
p − 1

2
p(1)

)∂p(1)

∂x
dS

− 1

σ 2
3

∫
∂D

(23)
I

(
p − 1

2
p(3)

)∂p(3)

∂x
dS − A0ARJ (1), (3.1)
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where,

J (1) = 2k
(1)
0

∫ z=0

z=−h1

(
Z

(1)
0 (z)

)2
dz,

σ1 = σ (x = a) and σ3 = σ (x = b), ∂/∂n denotes the outward normal derivative on the
boundary and ∇ = (∂/∂x, ∂/∂z). In (3.1) ∂D

(2)
F denotes the free surface (z = 0) and

∂D
(2)
Π the bottom surface (z = −h). The functions p(l) and their derivatives ∂p(l)/∂x,

l = 1, 3, appearing in (3.1), are considered to be represented by means of their series
expansions, (2.10), and their horizontal derivatives, respectively.

The function p = p(2)(x, z), (x, z) ∈ D(2) and the coefficients AR, {C(1)
n }n∈N and

AT , {C(3)
n }n∈N constitute a solution of the problem, if they render the functional F

stationary, δF = 0. By calculating the first variation of the above functional we
obtain the variational equation:

−
∫

D(2)

1

σ 2

(
∇2p − q2p +

2q

σ

∂U

∂x

∂p

∂x

)
δp dx dz +

∫ x=a

x=a

1

σ 2

(
∂p

∂z
− µp

)
δp dx

−
∫ x=b

x=a

1

σ 2

(
∂p

∂z
+

dh

dx

∂p

∂x

)
δp dx − 1

σ 2
1

∫ z=0

z=−h1

(
∂p

∂x
− ∂p(1)

∂x

)
δp dz

+
1

σ 2
3

∫ z=0

z=−h3

(
∂p

∂x
− ∂p(3)

∂x

)
δp dz +

1

σ 2
1

∫ z=0

z=−h1

(
p − p(1)

)
δ

(
∂p(1)

∂x

)
dz

− 1

σ 2
3

∫ z=0

z=−h3

(
p − p(3)

)
δ

(
∂p(3)

∂x

)
dz = 0, (3.2)

and the proof of the equivalence of (3.2) and the transmission problem (2.16) is
finally obtained by using standard arguments of the calculus of variations. The
present functional (3.1) and the variational principle (3.2) have been inspired by Chen
& Mei (1974) and Bai & Yeung (1974), concerning wave–body interaction problems
governed by the Laplace equation and characterized by complex boundaries, as
reported in Mei (1983, § 7.7), which has served as the basis for developing a hybrid
element method. Furthermore, (3.1) and (3.2) reduce to the corresponding forms given
in the above works if the current is zero. In the present work, the functional has been
modified in order to make it suitable for scattering problems governed by (2.7a), that
is essentially the modified Helmholtz equation with an additional first-order term
modelling the effect of shear current on the wave field. However, in the present case
the wave flow is not irrotational, and thus, a wave potential does not exist.

4. The coupled-mode system
In this section, we shall present a new coupled-mode system (CMS) modelling the

scattering of waves by horizontal shearing current in variable bathymetry regions.
The CMS is derived from the variational principle (3.2) using the following enhanced
local-mode series representation of the wave pressure field in the variable bathymetry
region D(2) (where also the current velocity U (x) is varying):

p (x, z) = P−1(x) Z−1 (z; x) + P0(x) Z0 (z; x) +

∞∑
n=1

Pn(x) Zn(z; x). (4.1)

This type of representation has been first introduced and studied by Athanassoulis
& Belibassakis (1999) for the propagation of water waves over variable bathymetry
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regions. In (4.1), the term P0(x) Z0(z; x) is the propagating mode of the wave pressure
field and the remaining terms Pn(x) Zn(z; x), n = 1, 2, . . . are the evanescent modes.
The additional term P−1(x) Z−1(z; x) is a correction term called the sloping-bottom
mode, which properly accounts for the satisfaction of the bottom boundary condition
on the sloping parts of the bottom, and identically vanishes on the horizontal parts
of the bottom. The function Zn(z; x) represents the vertical structure of the nth mode.
The function Pn(x) describes the horizontal pattern of the nth mode and is called the
complex amplitude of the nth mode.

The infinite set of functions Zn(z; x), n = 0, 1, 2 . . . , appearing in (4.1) are obtained
as the eigenfunctions of the following local vertical Sturm–Liouville problem,

d2Zn

dz2
+ κ2

nZn = 0 in the interval − h(x) < z < 0, (4.2a)

dZn(z = 0)

dz
− µ(x)Zn(z = 0) = 0 at z = 0. (4.2b)

dZn(z = −h)

dz
= 0 at z = −h(x), (4.2c)

thus ensuring completeness of the expansion in the vertical direction. These are given
by

Z0(z; x) =
cosh[κ0(x)(z + h(x))]

cosh(κ0(x) h(x))
, Zn(z; x) =

cos[κn(x)(z + h(x))]

cos(κn(x) h(x))
(n = 1, 2, . . .),

(4.3a)

where the eigenvalues {iκ0(x), κn(x)} are obtained as the roots of the local dispersion
relation (formulated at the local depth h(x) and for the local frequency parameter
µ(x)):

µ(x)h(x) = −κ(x)h(x) tan[κ(x) h(x)] in a � x � b where µ(x) = σ 2(x)/g. (4.3b)

The modes Pn Zn, n = 0, 1, 2, . . . , satisfy (4.2c) at the bottom, which is different
from the boundary condition (2.7c) on the non-horizontal parts of the bottom. This
problem is remedied by the introduction of the extra sloping-bottom mode P−1 Z−1.
A specific convenient form of the function Z−1(z; x) associated with the latter mode
is given by

Z−1(z; x) = h(x)[(z/h(x))3 + (z/h(x))2], (4.4)

and all numerical results presented here are based on this choice. However, other
choices are also possible (see Athanassoulis & Belibassakis 1999, § 4). From (4.1),
(4.2c) and (4.4), we easily find that the sloping-bottom mode satisfies:

P−1(x) =
∂p (x, z = −h (x))

∂z
, (4.5)

and thus, it is needed only in subareas where the bottom surface is not flat.
This additional mode makes the series (4.1) compatible with the Neumann bottom
boundary condition (2.7c) in the sloping parts of the bottom surface, while, at
the same time, it significantly accelerates the convergence of the local-mode series.
For more details about the role and significance of this term, see Athanassoulis &
Belibassakis (1999, § 4), where this idea is first introduced and discussed for wave
propagation/diffraction problems in variable bathymetry regions. Further details
about the extension of this model to three dimensions can be found in Belibassakis,
Athanassoulis & Gerostathis (2001).
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The local-mode expansion (4.1) is developed in order to represent accurately
and consistently the wave field (in the sense of completeness of the set of vertical
eigenfunctions and taking care for the correct satisfaction of the boundary condition
on the sloping bottom). Furthermore, each mode Pn Zn, n = −1, 0, 1, . . . , fulfils the
homogeneous free-surface condition (2.7b), individually. Thus, the latter condition is
satisfied as an essential one and, by using the present expansion in the variational
equation, the latter is considerably simplified, since the second term on the left-hand
side can be dropped. On the contrary, the field equation (2.7a) and the bottom-
boundary condition (2.7c) are to be satisfied by the superposition of all modes,
as calculated through the correct mode coupling that will be imposed by the final
coupled-mode system. Finally, it must be remarked here that, the present expansion is
physically consistent with the structure of the wave field in the case of a homogeneous
environment (horizontal bed and uniform current). In that case, the sloping-bottom
mode disappears (cf. (4.5)) and the rest of modes Pn Zn, n = 0, 1, . . . , satisfy (2.7) by
themselves.

By using the local-mode series representation (4.1) in the variational principle
(3.2), in a similar way as described in Athanassoulis & Belibassakis (1999, § 5), the
following coupled-mode system (CMS) with respect to the pressure mode amplitudes
is obtained:

∞∑
n=−1

amn(x) P ′′
n (x) + bmn(x) P ′

n (x) + (cmn(x) − amnq
2)Pn(x) = 0, (4.6)

in a < x < b, m = −1, 0, 1, . . . , where a prime denotes differentiation with respect to
x. The coefficients amn, bmn, cmn, m, n = −1, 0, 1, 2, . . . , of the CMS (4.6) are given
by

amn = 〈Zn, Zm〉 =

∫ z=0

z=−h(x)

Zn (z; x) Zm (z; x) dz, (4.7a)

bmn = 2

〈
∂Zn

∂x
, Zm

〉
+

2q

σ

dU

dx
〈Zn, Zm〉 +

dh

dx
[ZnZm]z=−h , (4.7b)

cmn =
〈
∇2Zn, Zm

〉
+

〈
2q

σ

dU

dx

∂Zn

∂x
, Zm

〉
+

[(
dh

dx

∂Zn

∂x
+

∂Zn

∂z

)
Zm

]
z=−h

. (4.7c)

4.1. Boundary conditions for the CMS

The CMS (4.6) is supplemented by the following decoupled end-conditions at x = a

and x = b, which are obtained from the last four terms of the variational equ-
ation (3.2),

P−1(a ) = P ′
−1(a) = 0, P−1(b ) = P ′

−1(b ) = 0 (n = −1), (4.8a)

P ′
0 (a ) + ik(1)

0 P0 (a ) = 2 ik(1)
0 A0 exp

(
i k

(1)
0 a

)
, P ′

n(a) − k(1)
n Pn (a) = 0 (n = 1, 2, . . .),

(4.8b)
P ′

0(b ) − ik(3)
0 P0 (b ) = 0, P ′

n (b ) + k(3)
n Pn (b ) = 0 (n = 1, 2, . . .), (4.8c)

where the coefficients k(1)
n , k(3)

n , n =0, 1, 2, . . . , are defined by (2.11a). The coefficients
of the series expansions (2.10) in the two half-strips are obtained from the solution
of the coupled-mode system through Pn(a ), Pn(b ), and are given by similar relations,
as in Athanassoulis & Belibassakis (1999, (5.18)). In particular, the coefficients
AR and AT defining the reflection and transmission coefficients

Kr = AR/A0, Kt = AT /A0, (4.9a)
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are obtained from the solution of the CMS (4.6) as follows:

AR =
(
P0(a) − A0 exp

(
ik(1)

0 a
))

exp
(
ik(1)

0 a
)
, AT = P0(b) exp

(
−ik(3)

0 b
)
. (4.9b)

An important feature of the solution of the present scattering problem by means of
the representation (4.1), is that it exhibits an improved rate of decay of the modal
amplitudes |Pn(x)| of the order O(n−4). Thus, a small number of modes suffices to
obtain a numerically convergent solution to P (x, z), even for large bottom slopes and
rapidly varying currents.

4.2. Simplified forms of the CMS

In the case of mild bottom topography and slow current variations, the evanescent
modes Pn, n =1, 2, 3, . . . , producing localized second-order effects, can be approxi-
mately disregarded. Also, because of bottom mildness, the sloping-bottom mode
(n= −1) can be neglected. In this case, the CMS (4.6) is simplified to the one-equation
model

a00(x)P ′′
0 (x) + b00(x)P ′

0(x) + (c00(x) − a00q
2)P0(x) = 0,

which, using the fact that b00 = a′
00 + (2q/σ )U ′ a00, can be put into the following

equation, which is called the mild-slope and shear equation:

(α (x) P ′
0(x))′ +

2qU ′ (x) α (x)

σ (x)
P ′

0 (x) +
(
α

(
κ2

0 − q2
)

− K(x)
)
P0 (x) = 0. (4.10)

The coefficients of (4.10) are given by

α = a00 =

∫ z=0

z=−h(x)

Z2
0 (z; x) dz =

1

2κ0

tanh (κ0h)

(
1 +

2κ0h

sinh (2κ0h)

)
, (4.11a)

K(x) = −
∫ z=0

z=−h(x)

∂2Z0(z; x)

∂x2
Z0(z; x) dz − h′

[
∂Z0

∂x
Z0

]
z=−h(x)

+
2qU ′

σ

∫ z=0

z=−h(x)

∂Z0(z; x)

∂x
Z0(z; x) dz

= β(x) − γ ′(x)/2 + qU ′(x)γ (x)/σ (x), (4.11b)

where

β = (24κ3
0 cosh κ0h)−1(ν1(h

′)2 + ν2(κ
′
0h

′) + ν3(κ
′
0)

2),

ν1 = 6κ4
0 (2κ0h + sinh κ0h),

ν2 = 6κ3
0h((−3 + cosh 2κ0h)κ0h + sinh 2κ0h),

ν3 = −6 κ0h cosh2 κ0h + 4(−2 + cosh 2κ0h)+6 cosh3 κ0h sinh κ0h,

and finally

γ = (α′ − h′/ cosh2(κ0h)).

In the above equations, Z0 (z; x) is given by (4.3a) and κ0 is the positive root of
the dispersion relation µh = κ0 tanh(κ0h), equation (4.3b) for n= 0. From the latter,
the derivative κ ′

0 is calculated to be: κ ′
0 = (4(q2U − 2ωq)U ′ cosh2(κ0h) − 2κ2

0gh′) ×
(g sin(2κ0h) − 2gκ0h)−1. In order to illustrate the richness and validity of the present
model, we will now discuss two particular forms to which (4.10) reduces, when there
is no current and when the bottom is horizontal.
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(i) No current (U = 0)

In the case of wave scattering by bottom topography without current, (4.10) reduces
exactly to the modified mild-slope equation (MMS) (Massel 1993; Chamberlain &
Porter 1995),

(α(x)P ′
0(x))′ +

(
α
(
κ2

0 − q2
)

− K(x)
)
P0(x) = 0, (4.12a)

where

K(x) = −
∫ z=0

z=−h(x)

∂2Z0(z; x)

∂x2
Z0(z; x) dz − h′ ∂Z0(z = −h(x); x)

∂x
= K1h

′′ + κ0K2(h
′)2,

(4.12b)

and K1, K2 are functions of κ0h, as given by Miles & Chamberlain (1998, equ-
ations (1.14b, c)).

(ii) Scattering by shear current in flat domain (dh/dx = 0)

In the case of a horizontal bottom, (4.10) can be written in the following form:

(Γ (x)P ′
0(x))′ +

(
Γ (x)

(
κ2

0 (x) − q2
)

+ Λ(x)
)
P0(x) = 0, (4.13a)

where

Γ (x)=(σ/ω)−2a00(x), Λ(x)=

(
σ

ω

)−2(
−2q

σ

dU

dx

〈
∂Z0

∂x
, Z0

〉
+

〈
∂2Z0

∂x2
, Z0

〉)
. (4.13b)

Equation (4.13) is the enhanced mild-shear equation (EMSE), which has been
derived and studied by McKee (1996). Furthermore, on the basis of very slow current
variations (|dU/dx| 
 1), the coefficient Λ(x) becomes of higher order in comparison
with κ2

0 Γ (x) and can be approximately neglected (Λ(x) ≈ 0). In this case, (4.13)
further reduces to the mild-shear equation (MSE), which has also been derived and
studied by McKee (1987).

In order to investigate the validity of EMSE and MSE models, in constant-depth
regions, McKee (2003) has developed an ‘exact’ multidomain approximation method,
which is based on piecewise constant approximation of the current velocity and on
complete normal-mode expansions (of the form of our (2.10)) in each subdomain.
The final solution concerning the coefficients of these expansions is obtained by
satisfying the matching conditions at the vertical interfaces (vortex sheets) separating
each subdomain (see, e.g. Smith 1983, equations (2.3–2.4); Kirby et al. 1987, equ-
ations (2.13–2.14). As illustrated in § 5.1 (below), the present CMS (4.6) results are
found to be in perfect compatibility with the multidomain approximation method.

5. Numerical results and discussion
Here, we present numerical results obtained by the present CMS and by

comparisons with other models. The discrete system is obtained by truncating the
local-mode series (4.1) to a finite number of terms, retaining a number M of evanescent
modes, in addition to the propagating and the sloping-bottom modes, and by using
central second-order finite differences based on a uniform horizontal grid of Np points
to approximate the (horizontal) derivatives in (4.6). Discrete boundary conditions are
obtained from (4.8) by using second-order forward and backward differences to
approximate derivatives at the ends (x = a and x = b). Thus, the discrete scheme is
uniformly of second-order in the horizontal direction. The forcing due to the incoming
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Figure 2. Obliquely incident waves scattered by opposing and following jet-like shear current,
in deep water. Comparison of the reflection coefficient, as obtained by the present CMS (solid
line), EMSE (dashed line) and MSE (dotted line), for various current velocities. +, results
obtained by the multidomain approximation method (McKee 2003). θ1 = 45◦; ε = ω2�/g = 1;
S = ω2h/g =1.

wave appears only in one equation, at the left endpoint x = a (see (4.8b)). We note here
that in all numerical examples presented and discussed in this section, the wave action
conservation equations, (2.15), are fulfilled with (numerical) error less than 0.01 %.

5.1. Scattering of water waves by jet-like shear currents in constant depth

We first consider the case of obliquely incident waves (θ1 = 45◦), in constant depth
(h = const), scattered by a jet-like current of the form:

U (x) = Umax exp(−(x/�)2). (5.1)

To model the above shear current profile, we use a = −3�, b = 3� and U1 = U3 = 0.
In this example taken from McKee (2003), apart from the incidence wave direction
(θ1), the other important non-dimensional parameters are: ε = ω2�/g, β = Umaxω/g,
S = ω2h/g.

In figure 2, we present results concerning the reflection coefficient for S =1 (deep-
water conditions), ε = 1 and various maximum current velocities Umax, corresponding
to β in the range −2 < β < 2, where negative values are associated with adverse
currents and positive values with following currents, respectively. The present CMS
results (shown by a solid line) have been obtained by using a total of 5 modes (n= 0,
1, 2, 3, 4), which were found to be enough for numerical convergence. We recall here
that in constant depth, the sloping-bottom mode is zero by definition (see (4.5)) and
need not be considered. The present CMS results are found to be in perfect agreement
with those obtained by the multidomain approximation method (McKee 2003), shown
also in figure 2 by crosses. In addition, in this figure we include the predictions for
the reflection coefficient by EMSE (dashed line) and MSE (dotted line), respectively,
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Figure 3. Refraction/diffraction of waves over a smooth and steep shoal, with the effects
of a following transitional shear current. Plot of the wave field (a) on the horizontal plane,
(b) on the vertical plane.

as calculated by the present method, using only the propagating mode (n= 0) and,
in addition, by disregarding Λ(x) in (4.13a). We can see in figure 2 the enhanced
performance of the EMSE vs. the MSE model, as also reported by McKee (2003). In
the case examined, the EMSE model accurately predicts the reflection coefficient for
β > −0.5, i.e. for relatively weak adverse currents and for following currents.

5.2. Waves scattered by a smooth underwater shoal in the presence of a shear current

In order to illustrate the combined effects of variable bathymetry and shearing current
on the wave field, we examine in this section the case of a smooth but steep underwater
shoal, characterized by the following depth function

h(x) =
h1 + h3

2
− h1 − h3

2
tanh

(
3π

(
x − a

b − a
− 1

2

))
, (5.2)

in a = 0 < x < b = 20 m, with h1 = 15 m and h3 = 5m. This bottom profile is quite
steep, having mean slope 50 % and maximum slope 240 %. (A sketch of the bottom
topography is shown in figures 3 and 4). The angular frequency of the incident wave
is selected to be ω =1.62 rad s−1, corresponding to shoaling ratio h1/λ = 0.64, where λ
is the local wavelength (that implies almost deep-water-wave conditions in D(1)), and
the incident wave direction is taken to be θ1 = −45◦. The phase speed of the waves in
the region of incidence is c1 = 6.06 m s−1.

We first consider the case of wave scattering by bottom topography only, without
any current effects. In this case, the shoaling ratio is h3/λ = 0.235 (implying
intermediate water-depth wave conditions in D(3)), and the corresponding phase
speed of the waves in the region of transmission is c3 = 5.47 m s−1. After passing
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Figure 4. Refraction/diffraction of waves over a smooth and steep shoal, with the effects of
an opposing transitional shear current. Plot of the wave field (a) on the horizontal plane,
(b) on the vertical plane.

through the variable bathymetry region, the waves are refracted owing to shoaling
and the direction of the transmitted wave is θ3 = −39.6◦. In this case, the reflection
and transmission coefficients, as calculated by the present CMS (4.6) using a total of
5 modes (n= −1, 0, 1, 2, 3) and Np = 251, are found to be: Kr = 0.025, Kt = 0.884.
In this and similar cases that will be presented in the sequel, such a small number
of retained modes in the local-mode series (4.1) is found to be enough for numerical
convergence, provided that the sloping-bottom mode (n= −1) is included. We remark
here that in the case of no current, the present CMS becomes equivalent to the
consistent coupled-mode model developed by Athanassoulis & Belibassakis (1999)
for the propagation of waves over variable bathymetry regions.

In figures 3 and 4, we present results for the same shoal and wave incidence as
before, but with the additional effects of a following (figure 3) and of an opposing
(figure 4) transitional shear current. In this case, the current velocity profile is taken
to be given by

U (x) =
U3

2
+

U3

2
tanh

(
3π

(
x − a

b − a
− 1

2

))
, (5.3)

in a = 0 <x <b = 20 m. Thus, the shear current velocity varies monotonically from
a minimum value U1 = 0 to a maximum value U3, which is taken to be a quarter
of the phase speed of waves in the region of incidence, U3 = max U =0.25c1 (where
c1 = 6.06m s−1). Now, the wave directions in the region of transmission D(3) are
modified owing to current, and in the case of the following current, |θ3| increases,
whereas in the case of the adverse current, |θ3| decreases, as predicted by (2.14).

Contour plots of the wave field (real part of wave pressure) above the variable
bathymetry domain are shown in figures 3 and 4, respectively. In these figures, the
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Current type maxU/c1 |θ3| Kr Kt

– 0 39.6 0.025 0.884
Following 0.25 57.5 0.176 0.852
Opposing −0.25 29.3 0.053 0.999

Table 1. Refraction/diffraction parameters of waves scattered by transitional shearing
current over smooth underwater shoal.

system of isobars is shown both in the horizontal plane (upper part of the figures) and
in the vertical plane (lower part). The direction and horizontal structure of the current
is also schematically shown in these figures by using arrows. Extension of the isobars
below the bottom surface has been maintained in the lower part of this figure in order
to visualize better the fulfilment of the Neumann boundary condition on z = −h(x),
which is equivalent to the fact that the equipressure lines intersect the bottom profile
perpendicularly (cf. (2.7c)). Also, the distribution of the wave pressure on the free
surface is plotted in figures 3(b) and 4(b), which is proportional to the free-surface
elevation (equation (2.8)). We observe in these figures, the continuous variation of the
wavelength (which increases for following and decreases for adverse currents), taking
place in the intermediate subdomain D(2). The main results concerning the refraction
parameters, reflection and transmission coefficients are summarized in table 1.

5.3. The case of a sinusoidal current

It is well known that in the case of obliquely incident waves on an opposing jet-like
shear current, in constant depth, wave trapping can occur under particular conditions
(see, e.g. the discussion by Mei 1983, § 3.7.2 and figure 7.2, and the discussion after
equation (6.22)). This could lead to great amplification of the wave in a transverse
channel along the current maximum. On the other hand, observations suggested
that wind-wave amplitudes might be enhanced within the downwind-directed current
maxima associated with alternating ‘wind streaks’ or ‘Langmuir circulation’ (see
also Smith 2001), leading to preferential breaking of waves along such current jets.
In order to investigate such phenomena theoretically, Smith (1983) developed an
eigenfunction expansion technique for the scattering of waves in constant depth by
narrow current jets, modelled by a top-hat pattern. The model problem consisted
of three homogeneous subregions separated by vertical vortex sheets. However, the
results indicated that wave amplitudes should be decreased within such current jets.

In order to extend the previous investigation, which was restricted to single uniform
current jets and shear concentrated along the edges of the jet, to the case of more
complex, horizontally alternating current structure, we consider here as another
example the case of waves of angular frequency ω =2.2 rad s−1, propagating with
direction θ1 = 60◦ in a constant depth strip h =15 m, and scattered by a following
sinusoidal shear current with horizontal profile of the form:

U (x) =
Umax

2

(
1 − cos

(
2π

x − a

L

))
, L =

b − a

2
, (5.4)

taking the maximum current velocity Umax to be equal to a tenth of the phase speed of
waves in D(1) and D(3), which in the present case is c1 = c3 = 4.46 m s−1. This current
has the form of two streaks and is characterized by continuously distributed shear.
More specifically, the shear current exists only in the region from a = 0 m to b = 20 m
(U1 =U3 = 0), and it has a periodic horizontal structure with characteristic length
L =10 m, that is comparable to the incident wavelength (L/λ = 0.78). In addition,
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Figure 5. Refraction/diffraction of waves by a following sinusoidal current, in constant
depth. Plot of the wave field on the horizontal plane.
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Figure 6. Amplification factor of waves scattered by a following sinusoidal current. Incident
wave frequency ω = 2.2 rad s−1 and direction θ1 = 60◦.

the wave conditions in the region of incidence correspond to deep-water conditions
(h/λ = 1.17).

The real part of the calculated wave field is shown in figure 5, as obtained by
the present method by using only 5 modes (n= 0, 1, 2, 3, 4) in the series (4.1) and
Np = 251. Again, the latter have been proved to be enough for numerical convergence,
even for such large gradients of the horizontal current velocity. We observe in figure 5
the formation of a transverse channel on the horizontal plane, centred at x = 10 m,
associated with partial trapping of the wave energy.

In figure 6, we present the amplification factor of the wave |P (x, z = 0)|/A0 (where
A0 is the amplitude of the incident wave), as calculated by the present method, along
with the sinusoidal current profile. Strong enhancement of the wave amplitude is
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observed at x =10 m, i.e. along the central axis of the current (5.4), corresponding to
more than an 80 % increase of the incident wave amplitude.

An explanation of this result is possible on the basis of simple refraction principles.
The incident wave direction increases within the first current jet (0 < x < 10 m) owing
to increase of phase speed (Mei 1983, figure 7.2a). Because the wavelength is
comparable with the horizontal length of the current, the wave at the exit of the
first jet (x = 10 m) has a local direction which is greater than 60◦. The latter is
such that the wave is partially reflected from the second jet (Mei 1983, figure 7.2b).
Thus, a small part of wave energy returns towards the central axis of the current
and is trapped in the transverse channel. The calculated reflection and transmission
coefficients by the present CMS are: Kr = 0.085, Kt = 0.996. Thus, almost all the wave
energy penetrates the region of transmission D(3), and at x > 20 m the wave direction
has recovered its initial value: θ3 = θ1 = 60◦. Consequently, repeated similar patterns of
wave enhancement are expected to occur, if the alternating following current structure
(5.4) is assumed to be periodically extended in D(3).

5.4. Longshore current effects on resonant reflection of waves by sinusoidal bathymetry

A final result presented in this work concerns the investigation of longshore current
effects on the reflection of waves by sinusoidal bathymetry. The phenomenon
of resonant reflection by undulating bottom topography has drawn considerable
attention owing to its significant role in the evolution of nearshore waves and its
possible relation to coastal morphology (development of shore-parallel bars). In
addition, the existence of Bragg scattering provides a possible means for constructing
coastal protection devices relatively low in profile in comparison to the waterdepth.
The above remarks justify the extent of theoretical and experimental works presented
on this subject by many authors (see, for example, Davies & Heathershaw 1984; Mei
1985; Mei, Hara & Naciri 1988; Guazzelli, Rey & Belzons 1992; Kirby 1993; O’Hare
& Davies 1993; Liu & Yue 1998).

However, as pointed out by Kirby (1988), any such physical formation or installation
is of finite length along the longshore dimension. This is likely to result in depression
of the maximum set-up behind the bar which would generate a nearshore circulation
pattern. This is expected to produce mean flows with onshore/offshore directions,
and perhaps also with a longshore component above the bar field. The effects of
cross-shore current on the resonant reflection of water waves by sand bars have
been studied by Kirby (1988), by using multiple-scale expansions to obtain evolution
equations for the amplitudes of waves. The latter were then used to investigate the
resonant reflection of waves by bar fields for both normal and oblique incidence. In
order to examine the longshore shear current effects on resonant reflection of waves
by sinusoidal bathymetry using the present CM, we consider the bottom topography
characterized by the following depth function:

h(x) = h0 − B sin(�bx) in 2π/�b < x < 2π(n + 1)/�b; h(x) = h0 otherwise. (5.5)

In (5.5), �b denotes the bottom wavenumber and B the amplitude of the bottom
undulations. To maintain correspondence with the experimental results presented in
Davies & Heathershaw (1984), n= 4 case, we chose h0 = 15.625 cm, B/h0 = 0.32 and
�b = 2π (so that the length of the bottom periodic cell is 1 m). Numerical results are
obtained by the present CMS using a total of 5 modes (n= −1, 0, 1, 2, 3) and 251
gridpoints per bottom wavelength. The results concerning the reflection coefficient
are shown in figure 7 for values of the resonant parameter 0.5 < 2κ cos(θ)/�b < 1.8,
around the point of first-order Bragg resonance. The latter in the case of no current
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Figure 7. Wave reflection over sinusoidal bottom topography for various incidence angles θ1

and bathymetric Froude numbers F .

is defined by

2κ cos(θ)/�b = 1, (5.6)

where in this subsection κ and θ will be used to denote the incident wavenumber and
direction (κ = κ

(1)
0 and θ = θ1). For comparison, in figure 7 we present results (always

obtained by the present CMS) for normal θ = 0◦ and oblique θ =30◦ incidence,
without current (shown by dashed lines), and for oblique incidence θ = 30◦ with the
effects of following and opposing jet-like currents. The current profile is of the form
of (5.4), with L = b − a and a = 0m, b =6 m. In order to illustrate the current effects
better, relatively strong velocities have been considered, corresponding to bathymetric
Froude numbers F = Umax/

√
gh0 = ±0.25.

In the case of no current, the results of the present method, shown by dashed lines
in figure 7, are found to be in very good agreement with corresponding predictions
by other theoretical models and with experimental data; cf. O’Hare & Davies (1993,
figure 3b), in the case of normal incidence, and Kirby (1993, figure 5), in the case
of oblique incidence. We observe in figure 7 that the peak of the main lobe of the
reflection coefficient (Kr ) is located at 2κ cos(θ)/�b ≈ 0.98, i.e. slightly shifted to a
lower value of the resonance parameter than that predicted by (5.6).

The Doppler shift of frequency owing to the current, also shifts the position of the
peak of the main lobe of Kr from 2κ cos(θ)/�b ≈ 1, for F =0, to a much lower value
2κ cos(θ)/�b ≈ 0.84 in the case of opposing current (F = −0.25), and to a higher value
2κ cos(θ)/�b ≈ 1.16 in the case of following current (F =0.25). The above differences
(−0.14 and 0.18, respectively) in the values of the resonant parameter 2κ cos(θ)/�b

controlling the location of the main the peak of Kr can be predicted, at a first order
of approximation, by using the dispersion relation formulated at F = 0 to obtain the
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variation of wavenumber in the neighbourhood of the Kr -peak due to frequency shift:

�κ =
1

Cg

(σ − ω) = −qUmax

Cg

= −κ sin(θ)Umax

Cg

, (5.7)

where Cg = dω/dk denotes the group velocity calculated at κ = �b/2 cos(θ) without
taking into account any current effects. Using (5.7) for κ = �b/2 cos(θ), in conjunction
with the resonance condition, which now reads

2(κ + �κ) cos(θ)/�b = 1, (5.8)

we obtain

2κ cos(θ)/�b = 1 ± ε. (5.9a)

In (5.9a) the plus sign refers to a following current and the minus sign to an opposing
current, respectively, and here

ε =
2|�κ | cos(θ)

�b

=
2 sin(θ)F

P

(
2 cos(θ)

�bh
tanh

(
�bh

2 cos(θ)

))−1/2

, (5.9b)

where P = 1 +
�bh/ cos(θ)

sinh(�bh/ cos(θ))
.

Application of (5.9b) to the examined case results in ε = 0.145. Thus, (5.9) predicts
the location of the main-lobe peak at 2κ cos(θ)/�b =1 ± 0.145 which is found to
approximate well the real values 0.84 and 1.16, respectively.

Furthermore, we observe in figure 7 that in the examined wave incidence θ =30◦,
the shape of the main lobe of Kr for F = ±0.25 looks similar to that for F =0.
However, the main lobe is ∼9 % narrower in the case of an opposing current, and
∼19 % broader in the case of a following current, in comparison with the no current
case (F = 0). Also, the peak value of Kr appears to be ∼10 % greater for F = −0.25,
and ∼18 % lower for F = 0.25. Thus, it seems that the area under the main lobe of
the reflection coefficient is approximately conserved for symmetric jet-like currents.
The above results and remarks may be useful for extending analytical models for the
approximate prediction of the reflection coefficient around the position of the peak
of the main lobe (as e.g. those given by Mei et al. 1988; Kirby 1993) to the case of
Bragg scattering by a sinusoidal bottom in the presence of longshore shear currents,
at least for low angles of wave incidence where the Kr pattern is less complex (see,
e.g. Kirby 1993, figure 5).

6. Conclusions
A continuous coupled-mode method has been developed for wave–current–seabed

interaction in variable bathymetry regions, with application to the problem of wave
scattering by steady shearing currents, characterized by current variations on various
scales. The present method does not introduce any simplifying assumptions or other
restrictions concerning the bottom slope and curvature or the horizontal gradient
of the current. Based on a variational principle, in conjunction with a rapidly
convergent local-mode series expansion of the wave pressure field in a finite subregion
containing the current variation and the bottom irregularity, a new coupled-mode
system of equations is obtained, governing the scattering of waves in the presence of
variable bathymetry and longshore shearing currents. In addition, by keeping only
the propagating mode in the local-mode series, a new one-equation model has been
derived, called the mild slope and shear equation, having the property to reduce to
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modified mild-slope equation when the current is zero and to the enhanced mild-shear
equation when the bottom is flat. Finally, the analytical structure of the present model
facilitates its extension in various directions as: (i) to three-dimensional problems;
(ii) to treat wave scattering by more complex current systems, characterized by more
general vertical structure with cross-jet component; and (iii) to include the effects of
weak nonlinearity.
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